Coleman Integration Versus Schneider Integration on Semistable Curves

نویسنده

  • Ehud de Shalit
چکیده

The purpose of this short note is to clarify the relation between p-adic integration on curves with semistable reduction, and the filtered (Φ, N)-module attached to the curve, following the work of Coleman and Iovita. 2000 Mathematics Subject Classification:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coleman Integration for Even Degree Models of Hyperelliptic Curves

The Coleman integral is a p-adic line integral that encapsulates various quantities of number theoretic interest. Building on the work of Harrison [8], we extend the Coleman integration algorithms in [2] to even degree models of hyperelliptic curves. We illustrate our methods with numerical examples computed in Sage.

متن کامل

Explicit Coleman Integration for Hyperelliptic Curves

Coleman’s theory of p-adic integration figures prominently in several number-theoretic applications, such as finding torsion and rational points on curves, and computing p-adic regulators in K-theory (including p-adic heights on elliptic curves). We describe an algorithm for computing Coleman integrals on hyperelliptic curves, and its implementation in Sage.

متن کامل

Iterated Coleman Integration for Hyperelliptic Curves

The Coleman integral is a p-adic line integral. Double Coleman integrals on elliptic curves appear in Kim’s nonabelian Chabauty method, the first numerical examples of which were given by the author, Kedlaya, and Kim [3]. This paper describes the algorithms used to produce those examples, as well as techniques to compute higher iterated integrals on hyperelliptic curves, building on previous jo...

متن کامل

The Frobenius and Monodromy Operators for Curves and Abelian Varieties

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Part I. Definitions of the operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. Definitions of N and F for curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. The monodromy ope...

متن کامل

THE p-ADIC HEIGHT PAIRINGS OF COLEMAN-GROSS AND OF NEKOVÁŘ

In [CG89], Coleman and Gross proposed a definition of a p-adic height pairing on curves over number fields with good reduction at primes above p. The pairing was defined as a sum of local terms and the most interesting terms are the ones corresponding to primes above p where the definition depends on Coleman’s theory of p-adic integration. Later, Nekovář constructed in [Nek93] a general p-adic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005